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Abstract 

The potential to model sea clutter radar returns using chaos theory is examined.   Chaotic 
systems display qualitative similarities to sea clutter returns such as broad flat spectrums, 
boundedness and irregular temporal behaviour. In this report several key parameters of 
chaotic systems, namely correlation dimension, Lyapunov spectrum and Lyapunov dimension 
are calculated from real sea clutter returns and found to be consistent with a chaotic 
interpretation. The airborne high resolution data (less than one metre) produces a correlation 
coefficient with an average value of 4.63 and an embedding dimension of 6-7. Lyapunov 
dimensions are consistent with correlation values. A local linear technique and a radial basis 
function (RBF) are used to construct a one step non-linear predictor. A Mean Square Error 
(MSE) of approximately 0.0032 between the predicted and normalized (i.e. maximum +/- 1 
range) real time series is measured. If sea clutter is in fact, a chaotic system, then it may be 
possible to accurately predict sea clutter returns via a non-linear chaotic model and produce 
substantial improvements in the small target detection capabilities of the APS-506 radar on 
the CP-140 maritime patrol aircraft. 

Resume 

On etudie la possibilite de modeliser le clutter radar de mer ä l'aide de la theorie du chaos. 
Les sytemes chaotiques presentent des similitudes qualitatives avec le clutter de mer, par 
exemple de larges spectres plats, la limitabilite et un comportement temporel irregulier. Dans 
le present rapport, plusieurs parametres cles des systemes chaotiques, notamment la 
dimension de correlation, le spectre de Lyapunov et la dimension de Lyapunov, sont calcules 
ä partir d'un clutter de mer reel, et on constate qu'ils sont compatibles avec une interpretation 
basee sur la theorie du chaos. Avec les donnees aeriennes ä haute resolution (moins de un 
metre), on obtient un coefficient de correlation moyen de 4,63 et une dimension de 
prolongement de 6-7. Les dimensions de Lyapunov sont compatibles avec les valeurs de 
correlation. Une technique lineraire locale et une fonction de base radiale (FBR) sont utilisees 
pour etablir un predicteur non lineaire ä une etape. Une erreur quadratique moyenne (EQM) 
egale approximativement ä 0,0032 entre les series chronologiques prevues et les series reelles 
normalisees est obtenue. 

DREOTR 2001-114 
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Executive summary 

The study of radar detection of small targets in clutter has traditionally relied on the 
application of stochastic theory to the development of target detection schemes. In theory, 
modelling sea clutter with an appropriate statistical distribution allows the calculation of the 
detection probability for a specified false alarm rate. This approach assumes that clutter 
returns are stochastic processes with infinite degrees of freedom, or at the very least, 
processes that have such a large number of degrees of freedom that the only practical 
approach is to model them as stochastic processes. Qualitatively a stochastic interpretation 
appears to be consistent with real clutter return spectrums, which are typically highly irregular 
in character and have continuous broadband spectrums reminiscent of broadband noise. 

In contrast to stochastic methods it has recently been suggested that sea clutter returns can be 
modelled using chaos theory. Chaotic systems are non-linear dynamic systems with a 
relatively small number of degrees of freedoms. These deterministic dynamic systems have 
the unusual property of displaying irregular behaviour and broad flat spectrums. If it can be 
shown that sea clutter is in fact, a chaotic system, and the function describing it can somehow 
be determined, then the deterministic nature of a chaotic solution should prove more 
informative. The ultimate goal of applying chaotic theory to the sea clutter problem is to 
exploit its deterministic nature so as to develop accurate predictors for sea clutter returns. 
This ability to accurately predict sea clutter returns via a non-linear chaotic model should, in 
theory, produce substantial improvements in detection performance over that of stochastic 
models and in particular, improve the small target detection capabilities of the APS-506 radar 
on the CP-140 maritime patrol aircraft. 

This report examines the behaviour and characteristics of chaotic systems. Past attempts to 
identify chaotic behaviour in radar returns from sea clutter are reviewed and summarized. 
Most of the past work has focussed on the studies of returns from relatively low resolution 
radars (i.e. range resolutions of greater than 30 metres) operating in a staring mode from a 
land based position overlooking the sea. This study extends the previous work which showed 
that the calculated correlation coefficients of real sea clutter were independent of the time or 
season in which it is taken, as well as radar range, range resolution, type of like-polarisation, 
sea state, radar location and radar type. In this report high resolution data (less than one 
metre) collected using the AN/APS-506 airborne maritime surveillance are analysed. Several 
key parameters of chaotic systems, namely correlation dimension, Lyapunov spectrum and 
Lyapunov dimension are calculated from the real sea clutter returns and found to be consistent 
with a chaotic interpretation. 

The deterministic character of the sea clutter returns is tested by developing a one step non- 
linear predictor. Two different approaches are implemented, a local linear technique and a 
radial basis function (RBF) neural network. Good performance is achieved with a mean 
square error (MSE) of approximately 0.0032 measured between the predicted and real time 
series, both of which have been normalized to have a maximum range of +/- 1. 

McDonald, Michael K. 2001. Chaotic Sea Clutter Returns: Current Status and 
Application to Airborne Radar Systems. DREO TR 2001-114 Defence Research 
Establishmentottawa. 
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Sommaire 

L'etude de la detection radar en presence de clutter a par le passe repose sur l'application de la 
theorie stochastique pour l'elaboration de plans de detection de cible. En theorie, la 
modelisation du clutter de mer au moyen d'une distribution statistique appropriee permet de 
calculer la probabilite de detection pour un taux de fausse alarme constant donne. Dans cette 
approche, on considere que le clutter est un processus stochastique avec un nombre infini de 
degres de liberte, ou tout au moins un processus comportant un nombre tellement eleve de 
degres de liberte que la seule methode pratique applicable pour le modeliser consiste ä le 
considerer comme un processus stochastique. Qualitativement, une interpretation 
stochastique semble etre compatible avec les spectres observes de clutter reel, lequel est 
habituellement de nature tres irreguliere et presente des spectres continus ä large bände qui 
rappellent un bruit ä large bände. 

Bien qu'une grande importance soit accordee aux methodes stochastiques, on a recemment 
suggere que le clutter de mer pourrait etre modelise ä l'aide de la theorie du chaos. Les 
systemes chaotiques sont des systemes dynamiques non lineaires possedant un nombre 
relativement faible de degres de liberte. Ces systemes deterministes dynamiques ont la 
propriety peu courante de presenter un comportement irregulier et de larges spectres plats. Si 
on peut demontrer que le clutter de mer est en realite un Systeme chaotique, et que la fonction 
servant ä le decrire peut d'une fagon ou d'une autre etre determinee, la nature deterministe 
d'une solution chaotique devrait se reveler plus riche en information que la solution 
stochastique, ce qui devrait se traduire par une modelisation et des capacites de detection 
ameliorees. 

Dans le present rapport, on etudie le comportement et les caracteristiques de systemes 
chaotiques. Les tentatives anterieures visant ä detecter le comportement chaotique du clutter 
radar de mer sont examinees et resumees. La plupart des travaux anterieurs etaient axes sur 
les etudes des echos obtenus avec des radars ä resolution relativement faible (resolutions en 
distance superieures ä 30 metres) utilises en mode sans balayage ä partir d'une position au sol 
donnant sur la mer. L'etude approfondit les travaux anterieurs, lesquels ont montre que les 
coefficients de correlation calcules du clutter de mer reel etaient independants de l'heure ou de 
la saison ä laquelle ils etaient determines, ainsi que de la portee radar, de la resolution en 
distance, du type de polarisation parallele, de l'etat de la mer, et de la position et du type du 
radar. Dans le present rapport, des donnees ä haute resolution (moins de un metre) recueillies 
ä l'aide du radar aerien de surveillance maritime AN/APS-506 sont analysees. Plusieurs 
parametres cles des systemes chaotiques, notamment la dimension de correlation, le spectre de 
Lyapunov et la dimension de Lyapunov, sont calcules ä partir du clutter de mer reel, et on 
constate qu'ils sont compatibles avec une interpretation basee sur la theorie du chaos. On 
verifie le caractere deterministe du clutter de mer en etablissant un predicteur non lineaire ä 
une etape. Deux approches differentes sont mises en application, une technique lineaire 
locale et un reseau neuronal ä fonction de base radiale (FBR). Une bonne performance est 
obtenue avec une erreur quadratique moyenne (EQM) egale approximativement ä 0,0032, 
mesuree entre les series chronologiques prevues et les series reelles normalisees. 

McDonald, M.K. 2001. Clutter de mer chaotique : etat actuel et application aux systemes 
radar aerooortes. DREO 2001-114. Centre de recherches pour la defense Ottawa. 
jv DREO TR 2001-114 
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1. Introduction 

The study of radar detection in clutter has traditionally relied on the application of stochastic 
theory to the development of target detection schemes. In theory, modelling sea clutter with 
an appropriate statistical distribution allows the calculation of the detection probability for a 
specified false alarm rate. Early studies of sea clutter returns from low resolution radars were 
quite successful in applying the Guassian probability distribution to the detection problem; the 
success of this approach made intuitive sense as the total return from any resolution cell 
(nominally the area defined by the beam width and range resolution of the radar) could be 
viewed as the sum of the many scatterers within it; for a very large numbers of scatterers the 
application of the central limit theorem (CLT) will result in the aforementioned Guassian 
distribution. The theory surrounding the application of the Guassian distribution is well 
developed, Skolnik [1], for example, provides a good introduction. 

Since the strength of clutter returns is directly proportional to the cell area being viewed, it 
was anticipated that improving the range resolution of radars systems (i.e. smaller resolution 
cell areas) would result in a corresponding improvement in detection capability. 
Unfortunately, this did not prove necessarily true as an increasingly impulsive or spiky 
character was observed to develop in the clutter returns as the cell size was decreased. The 
observed breakdown of the Guassian behaviour is almost certainly the result of bunching of 
scatters due to correlations in the underlying sea surface structure. To overcome the 
aforementioned shortcomings, several other distributions have been suggested as models for 
the statistics of sea clutter returns. Two of the most favourable candidates currently being 
considered are the K distribution and spherically invariant random processes (SIRP), the 
former being applied to envelope detection processes while the latter is applied to coherent 
detection (SIRP can be shown to reduce to the K distribution when amplitude envelope 
detection is imposed). The theory surrounding the application of these distributions to the 
target detection problem is ongoing and a large body of literature exists (see for example 
[2,3,4]). 

The common element in all the above approaches is that the clutter returns are assumed to be 
stochastic processes with infinite degrees of freedom, or at the very least, processes that have 
such a large number of degrees of freedom that the only practical approach is to model them 
as stochastic processes. Qualitatively a stochastic interpretation appears to be consistent with 
the observed spectrums of real clutter returns, which are typically highly irregular in character 
and have continuous broadband spectrums reminiscent of broadband noise. Figure la shows 
an example of real clutter returns measured using the high resolution AN/APS-506 maritime 
surveillance radar. The spectrum of the same signal is shown in figure lb. The irregular 
nature of the return and the continuous broadband nature of the spectrum are readily apparent. 
The measured probability distribution is also shown. 

In contrast to the focus on stochastic methods it has recently been suggested that sea clutter 
returns can be modelled using chaos theory [5]. Chaotic systems are non-linear dynamic 
systems with a relatively small number of degrees of freedoms. The last thirty years has seen 
a growth in the understanding of these deterministic dynamic systems that have the unusual 
property of displaying seemingly random behaviour. 

DREOTR 2001-114 



This first section of this report reviews the general characteristics of non-linear dynamic 
systems.   This section is followed by brief introduction to chaotic systems and some of the 
invariant measures and properties associated with them. The next section very briefly 
introduces neural networks in preparation for the discussion of past attempts to model sea 
clutter as a chaotic systems which is presented in the succeeding section. The final section 
summarizes the results of recent studies undertaken by DREO and the University of Calgary 
to investigate the chaotic behaviour of sea clutter returns collected from moving airborne 
platform. 

DREO TR 2001-114 
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Figure 1. Sea clutter returns from AN/APS-506 radar (a) Time 
series of amplitude, (b) Spectrum of amplitude, (c) Probability 
distribution of amplitude. 
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2. Non-Linear Dynamic Systems 

To understand the material presented in this report it is necessary to briefly review non-linear 
dynamic systems. The general form of a dynamic system can be written as 

^ = f(x)       (1) 
dt 

for an nth-order autonomous dynamical system and 

^- = f(x,t)    (2) 
dt 

for the nth-order nonautonomous dynamical system where x(t) e R" is the state at time t, 

f :R" -¥ R" is the vector field and R" is the state space. This form of definition permits the 
existence of a wide variety of systems. Parker and Chua [6] provide a useful tutorial 
describing the behaviour of a variety of non-linear systems. They identify a number of 
different types of systems admitting equilibrium point, periodic and quasi-periodic solutions. 

It is clear without further consideration that any solution of the above dynamic system that 
tends to an equilibrium point would not be representative of the irregular nature of the clutter 
response shown in figure 1. In addition, examination of the temporal and spectral 
characteristics of systems with periodic and quasi-periodic solutions shows that they are also 
poor models for real clutter returns. This point is clarified below by examining the temporal 
and spectral properties of examples of the latter two types of systems. Parker and Chua's 
work [6] uses van der Pol's equation in their examples, for convenience the same dynamic 
system will be presented here. Readers requiring a more in depth analysis are referred back to 
the aforementioned paper and references therein. 

A classic example of a limit cycle in a periodic system is given by van der Pol's equation 

dx 
— = y .       (3) 
dt 

^- = {\-x2)y-x.      (4) 
dt 

The steady state solution for this system is shown in figure 2a; figures 2b and 2c show the x 
component of the corresponding temporal waveform and spectrum, respectively. Comparing 
figure 2 for the periodic solution of van der Pol's with the real returns in figure 1, it is 
immediately clear that the temporal behaviour of real clutter returns is much more irregular 
than that associated with the periodic solution. Figure 2c shows that the spectrum of the 
periodic solution is composed of discrete components, quite different from the broad 
continuous spectrum of the clutter in figure lb. 

DREOTR 2001-114 



Adding a forcing term to Van der Pol's equation forms an example of a quasi-periodic system, 

dx 
-r = y>       (5) 
dt 

^ = (l-x2)y-x + Acos2a(—),     (6) 
dt Ti 

where the system is assumed to have a natural unforced period, Tx, and a forcing term with a 

period T2 and an amplitude A. 

The solution to this system can either synchronize with some multiple of the forcing period, 
T2, giving the periodic solution, or as an intermediate case neither T{ nor T2 will dominate 
and quasi-periodic behaviour occurs. Figure 3 illustrates an example of a quasi-periodic 
solution for this equation. Comparing figure la of real sea clutter returns with figure 3b it is 
again apparent that while the temporal behaviour of the x component of the system is more 
strongly modulated for the quasi-periodic solution (in comparison with the periodic example 
of figure 2b) with both amplitude and frequency modulation present, the overall behaviour is 
still far too regular to serve as a reasonable model of clutter returns. In addition, the spectrum 
of the forced van der Pol's system is composed of tightly spaced sidebands of discrete 
frequencies centred on the natural frequencies of the unforced system, quite different from the 
spectrum of clutter returns in figure lb. It should be emphasised that while the above two 
examples are both based on the van der Pol's equations, the qualitative characteristics 
described above, namely the regular temporal behaviour and the discrete spectrum 
components, will in general hold true for other periodic and quasi-periodic solutions. 

All the solutions discussed so far, namely the equilibrium point, periodic and quasi-periodic, 
possess a fundamental limit set and while the existence of a steady state limit is obvious for an 
equilibrium point solution it is also readily apparent in the state diagram of figure 2a for the 
periodic system. The existence of a limit set is somewhat less obvious for the quasi-periodic 
solution but can be readily shown by diffeomorphically copying the trajectory into the S by S 
torus space of the two base frequencies. The trajectory repeatedly passes arbitrarily close to 
every point on the torus, which then defines the limit set of the quasi-periodic solution. 
Figure 4 illustrates this concept more clearly. The attracting limit set is often simply referred 
to as the attractor. 
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Figure 2: Periodic behaviour of van der Pol equation, (a) 
Trajectory. (b)Time series of x component, (c) Spectrum of first 
component. 
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Figure 3: Quasi-periodic behaviour of van der Pol equation for 

2K 
A=0.5 and T2 = —.  (a) Trajectory,    (b) Time series of x 

1.1 
component, (c) Spectrum of first component. 
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Figure 4. Diffeomorphic copy of trajectory of two periodic system (fig. 3a) into S by S torus space. 
Each dimension S represents one of the base frequencies of the quasi-periodic system. Trajectory 
passes arbitrarily close to each point on torus. 
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3. Chaotic DynamicSystems 

Unlike the dynamic systems described above, chaotic systems possess the unusual property of 
displaying apparently noise-like behaviour. This noise-like behaviour is the result of the 
sensitive dependence of a chaotic system to its initial conditions. A chaotic system is a 
deterministic system and in theory its future behaviour can be predicted provided its initial 
state is precisely known. In practice however, it is impossible to measure any initial state 
exactly; therefore in a chaotic system any two measured initial states that are arbitrarily close 
to each other will, with time, diverge at an exponential rate until they are effectively 
uncorrelated. The rate at which they diverge will depend on the particular system but the 
inherent unpredictability of these systems gives rise to their noise-like character. 

Chaotic systems typically display a temporal behaviour that appears qualitatively quite 
random or irregular and unlike periodic and quasi-periodic solutions, the spectrum of a 
chaotic solution is continuous and broadband. Both these qualities are partial prerequisites for 
any dynamic system proposed as a model of sea returns. Figure 5 illustrates an example of a 
solution of the chaotic system represented by Duffing's equation 

^ = -S^ + y-y3 + ycos(cot).    (7) 
dt dt 

where Jis the damping inherent in the system, and 6>and fare the angular frequency and 
amplitude, respectively, of the forcing term. The irregular nature of the solution and the broad 
flat spectrum associated with it are readily apparent. In addition, the solution is clearly 
bounded, consistent with real sea clutter returns. The object on which the trajectories of a 
chaotic system accumulate is termed a strange attractor in contrast to the attractor of periodic 
and quasi-periodic solutions. The strange attractor concept is an important one in chaos 
theory and will be discussed further in the following sections. 

If it can be shown that sea clutter is in fact a chaotic system, and the function describing it can 
somehow be determined, then the deterministic nature of a chaotic solution should prove more 
informative then the stochastic approach; improved modelling and detection capabilities 
should result. While the above discussion is illustrative of some of the qualitative similarities 
between sea clutter and chaotic systems, it is by no means certain that sea clutter can be 
modelled as a chaotic process.   Before moving on to the issue of applying chaos theory to sea 
clutter it is necessary to briefly introduce and discuss some basic concepts that will arise in the 
ensuing discussions. 

DREO TO 2001-114 
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Figure 5: Chaotic behaviour of Duffing's equation 6 = 0.25, y=0.3, 
uj=1.0 (a) Trajectory, (b) Time series of x component, (c) 
Spectrum of first component. 
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3.1 Attractor Dimension 

One invariant measure fundamental to the classification of attractors is dimension. An 
attractor is defined as being n-dimensional if in the neighbourhood of every point it looks like 
an open subset of the state space of dimension n. Figures 2 and 3 respectively present the 
examples of periodic and quasi-periodic solutions discussed earlier. We see that the periodic 

attractor has a dimension of one since it can diffeomorphically mapped to a subset of R . 
The quasi-periodic case is two dimensional as was clearly seen through the diffeomorphic 
mapping of the trajectory onto a two dimensional torus discussed earlier. An equilibrium 
solution would have zero dimension. Strange attractors differ from the above in that they do 
not have an integer dimension; the dimension associated with them is fractal. A wide variety 
of definitions of dimension exist for strange attractors, the interested reader is referred to 
Parker and Chua's tutorial [6]; for the purposes of this report we concentrate on correlation 
dimension, the most commonly used measure of dimension in papers on the application of 
chaotic theory to sea clutter. 

In its essence, correlation dimension is a measure of the correlation between an arbitrary point 
on the attractor manifold and its surrounding points averaged over all locations on the 
manifold. Probably the easiest way to clarify this description is to examine one of the earliest 
algorithms for calculating it as presented by Grassberger and Procaccia [7]. The first step is 
to consider a set of /V points, identified as Xj with j = l,N on an attractor embedded in a 

phase space of dimension n . We now define a function, referred to as the correlation integral 
of the attractor, as follows 

C(r) = lim -Ly0(r-\xi-Xj |), 
ly      '.7=1 

(8) 

where 9 is the Heaviside function with 0 - 0 if x < 0 and 0-1 if x > 0. The norm 
| xi - x   | is either the maximum norm or Euclidean norm and r is a prescribed distance from 

the test point xi. This definition of C{r) illustrates the correlational nature of the dimension. 

It can be shown that [7] 

C(r)~rDc,      (9) 

where Dc is the correlation dimension and r is reasonably small. This power law relationship 

can be exploited to determine Dc by plotting log C(r) versus log r. In the region where the 

power law holds, the slope of the line will be constant and equal to the correlation dimension. 
Typically curves are plotted for increasingly large embedding dimensions until the estimates 
from the slopes of each curve converge indicating that a sufficiently large embedding 
dimension (embedding dimension is discussed further in section 3.4) is being used. This 
process allows both the correlation dimension and minimum required embedding dimension 
to be determined. The process is also a useful diagnostic for identifying systems which are 
not chaotic in nature: if the value for correlation dimensions does not converge with 
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increasing imbedding dimension this is indicative of a process which is truly random or 
deterministic with very high degrees of freedom. Clearly a chaotic system would be a poor 
choice as model under these circumstances. 

The power law described above holds true only for small r, in theory the smaller r utilised 
the more accurately Dccan be calculated, however this improvement is offset by the limited 

size of any data set. Clearly if r is made very small then very few data points will lie within 
the spherical region of radius r, under these conditions the calculation of Dc will not be very 

accurate. It is necessary to ensure that a sufficiently large data set is available so that a 
sufficiently small r may be used in the calculation. 

3.2 Lyapunov Spectrum 

As discussed above, one of the most fundamental properties of a chaotic system is its 
sensitivity to the initial starting conditions. Any two measured initial states that are arbitrarily 
close to each other will, with time, diverge exponentially from each other until they are 
effectively uncorrelated. The rate at which they diverge will depend on the particular system. 
This raises the important question of how to define and quantify a parameter, which 
characterises the evolution of the trajectories. 

A useful starting point to consider is the simpler case of equilibrium point solutions. 
Denoting the equilibrium point as x   and linearising the function / , introduced in equations 

(1) and (2), we write the formula defining the time evolution of perturbations about the 
equilibrium point as 

^^ = Df{Xeq)ÖK{t) , (10) 
dt 

where D is the Jacobian of the system. The trajectory with initial condition xeq + &c0 is 

given to the first order by 

fl(xeq + öxo) = x + äc(t), (11) 

substituting in (10) we obtain 

o (/h(xeq + Ox«) = xeq + eDHxe,)'Sx 

= Xeq + Cit]xeXU +... + CnT]neU ' 

where A-, and 77, are the eigenvalues and eigenvectors, respectively, of Df(xeq).  c, is a 

scalar constant chosen to match initial conditions. It is clear from the structure of equation 
(12) that if RE[AI ] < Ofor all / then the equilibrium point will be stable as all perturbations 

will tend to zero as t —> °° . 
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The same approach can be applied to the periodic solutions. In this case use is made of the 
Poincare map which is essentially a method of representing a trajectory by sampling it at 
constant time intervals, typically the natural frequency of the system. As such the Poincare 
map of a periodic solution corresponds to a point, denoted x *. The linear discrete time 
evolution of a perturbation about this point is given by 

&* + I = DP(JC*)&*.      (13) 

In a directly analogous manner to the equilibrium point solution we can derive the eigenvalues 
(w-)and eigenvectors (77,)of DP(x*). The eigenvalues (m;)are called characteristic 

multipliers and determine the contraction and expansion around x * for each sampling 
interval. 

The equivalent desired invariant for a chaotic system is the Lyapunov exponents, which are a 
generalization of the characteristic multipliers, specifically the Lyapunov exponents are 
defined as [6] 

^■ = lim-ln|/n,-(0l-     (I4) 
'-'- t 

The entire set of Lyapunov exponents associated with a dynamic system is referred to as the 
Lyapunov spectrum. Using the concept of Lyapunov exponents we can define additional 
requirements that must be met for a system to have the potential of being considered a 
bounded chaotic solution. It can be shown that at least one Lyapunov exponent must be equal 
to zero; a condition which is true for any bounded attractor of an autonomous system. In 
addition, if the system is to show the sensitive dependence to initial conditions that is 
characteristic of a chaotic system, at least one Lyapunov exponent must be greater than zero 
[8]. This condition makes intuitive sense, as initial condition sensitivity is a property of an 
expanding flow. This property must be met for a system to be considered chaotic. If the 
solution is to be bounded, a requirement for a real dissipative process such as a sea clutter, it 
is also necessary that the sum of the exponents be less than zero [6]. 

A by-product of the Lyapunov spectrum is the Lyapunov dimension, DLyapmov, defined by [9] 

K 

Ü 
^I.vanunov ~~ "■   '  T~^ T '^^/ 

I ÄK+l I 
Lyapunov 

where the At are arranged in descending order and the integer K satisfies the conditions 

X4>0,       (16) 
i=\ 
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K+\ 

£4. <o.    (17> 
1=1 

If a dynamical system is chaotic it must have a Lyapunov dimension that is close to the 
calculated correlation dimension, comparison of these two independently calculated values 
provides a useful crosscheck of the algorithms used to calculate each. 

3.3 Kolmogorov entropy 

The Kolmogorov entropy, hk, is a generalization of Shannon's entropy to dynamical systems. 

It provides a measure of the rate of change in our ability to specify the microscopic state of a 
chaotic system as time progresses. This parameter and the methods of calculating it are 
discussed in more detail in other papers; see Haykin [10] and references therein. The 
Kolmogorov entropy and the sum of the positive Lyapunov exponents should be equal 

i.e.        hK = Yd*%-     (18> 

Comparing the sum of the calculated Lyapunov exponents with the independently calculated 
Kolmogorov entropy provides a useful crosscheck of the algorithms used to calculate each. 

3.4 Reconstructing Attractors 

In a real or experimental setting it is typically impractical or impossible to collect information 
on all the state variables. At first glance this restriction would seem to prohibit the 
reconstruction of the underlying attractor, however, it has been shown that it is possible to 
reconstruct the attractor of a chaotic process using only one component of the state. The 
approach utilised employs a time delay embedding technique and was first put on firm 
theoretical footing by Takens [11]. It is subsequently referred to as Takens' embedding 
theorem. The application of this theorem begins by formulating the dE dimensional 

reconstruction vector 

r(m) = [y(m),y(m-T),...,y(m-(dE-l)T], (19) 

where dE is the embedding dimension, T is the normalized embedding delay and y\m) is an 

observable component which is related to the state vector x(m) by 

y(m) = g(x(m)),        (20) 

with g(») a smooth scalar function. A sequence of such vectors can be generated by 
advancing through the index m . Takens showed that if the strange attractor is a 
Dc dimensional object, an embedding dimension dE equal to 2DC +1 will allow 
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reconstruction of the underlying attractor. This requirement is only a sufficient condition, 
however, and a suitable dE may be found to lie within the range [Dc ,2DC +1]. Essentially 

this says that a reconstruction vector, r(m), of suitable dimension dE will uniquely determine 

the next vector r(m + T). In practical terms this can be exploited by building a sequence of 
reconstruction vectors of the observable component, if these vectors are of sufficient 
embedding dimensions they will successfully define the attractor and can be used to develop a 
predictive model of the chaotic system. As an example, the reconstruction vectors could be 
used to train a neural network to approximate the dynamic ¥ which connects the vectors 
r(m) and r(m +1), i.e. 

r(m + t) = x¥(r(m)).   (21) 

The choice of time delay, t, requires some care. If r is too small then r{m) and r(m + T) will 
be too close and they will not be independent, the reconstructed attractor will then be 
restricted to the diagonal of the reconstruction space. If T is too large then r(m) and 

r{m +1) are uncorrelated and the structure of the attractor is lost. 
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4. Neural Networks 

To exploit the chaotic nature of a system a method is required for approximating its transfer 
function. Neural networks possess the ability to approximate any continuous function by 
adaptation through training with a sample set of data from the real system. In the papers 
discussed in this report two different types of neural nets are considered, namely the Radial 
Basis Function neural net and the MultiLayer Perceptron neural net. While it is beyond the 
scope of this report to describe these two different approaches in detail the basic structure of 
each as well as its advantages or disadvantages is summarized below. The interested reader is 
referred to Haykin [12] for a more detailed discussion. 

4.1 Radial Basis Function (RBF) 

The structure of the RBF neural net is shown in figure 6. It is composed of a layer of input 
nodes connected to a hidden layer of computing nodes by linear synaptic connections. The 
hidden layer is in turn coupled to the output layer by non-linear synaptic connections. The 
RBF network possesses an on-line learning ability, a property essential for any real time 
signal processing application. It also possesses an inherent regularisation ability that makes it 
a robust technique for dealing with ill posed problems such as model fitting from noisy data. 

4.2 MultiLayer Preception (MLP) 

The structure of a MLP neural net is shown in figure 7. It is composed of a layer of input 
nodes connected to two or more layers of hidden neurons. Typically the computation nodes 
of the hidden layers are non-linear and the output layer is linear. The MLP neural net is 
trained using a back-propagation algorithm that adjusts the weights of the interconnecting 
synapses. The back-propagation algorithm is known to have slow convergence and is not 
suitable for a real time signal processing application. 
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Figure 6. Radial basis function neural network. 
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Figure 7. MulitLayer preceptron neural network. 
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5. Modelling Sea Clutter as a Chaotic System 

As discussed above the potential for applying chaos theory to the modelling of sea clutter 
returns is suggested by the qualitatively similar appearance of temporal returns and spectrums 
from sea clutter and chaotic systems.   The motivation for doing so lies in the fact that a 
deterministic model of sea clutter, if successful, will significantly reduce the degrees of 
freedom and should result in improved detection performance. A historical review of the 
application of chaos theory to sea clutter is given below, culminating with the current state of 
research. 

Leung and Haykin [5] were the first to suggest the existence of a radar clutter attractor. They 
used low resolution (i.e. 30 m range resolution) data collected using the IPIX radar in the 
coastal location of Cape Bonavista, Newfoundland. The radar was operated in a 'staring 
mode' to collect returns from the ocean surface along a radial line. This first attempt at 
establishing the existence of a radar clutter attractor was crude; Leung and Haykin employed 
relatively short time series of data, only 2000 points, in the calculation of the correlation 
coefficient. In addition they chose the time delay used for the embedding by trial and error, 
finally settling on a value they felt gave embedding co-ordinates that appeared 'reasonably 
independent.' In their paper they adopt the Grassberger and Procaccia algorithm for 
calculating the correlation dimension [7]. From their analysis they concluded that the 
correlation dimension of the attractor has a value lying between 6.4 and 6.7. Because of the 
short time series and subjective choice of embedding delay their results were far from 
conclusive but they did open up the tantalising prospect of the existence of a radar attractor. 

Three years later Leung and Lo [13] published a paper further studying the chaotic nature of 
sea clutter and also attempting limited detection of ice 'growlers' (small fragments of 
icebergs) in sea clutter. They again utilise data collected with the IPIX radar at the Cape 
Bonavista, Newfoundland site and attempt to address some of the shortcomings of the earlier 
paper by Leung and Haykin [5]. In particular, the length of the time series used to calculate 
the correlation coefficient has been increased to 20000 samples with the expectation of 
improved accuracy. They have also adopted a more objective method for determining the 
required time delay between embedding samples, specifically, they use the first zero-crossing 
point of the autocorrelation function of the time series as the normalized embedding delay, r. 

Using the method of Grassberger and Procaccia [7], they analysis four data sets and report 
correlation dimensions ranging from 5.8 to 7.2. Because of the inaccuracy of their calculations 
they are unable to speculate on any relationship between the correlation dimension and the 
physical properties of sea surface producing the clutter returns such as wave height or wind 
speed. 

For the first time Leung and Lo develop a non-linear predictive model of the sea clutter 
returns using a neural networks trained with sample data from the real system to approximate 
the continuous function. They chose to implement an RBF neural network [12]. Their choice 
of the RBF neural net was partly motivated by its on-line learning ability and inherent 
regularisation. 
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After training the RBF network with a 2000 point set they undertake to perform one step 
predictions of the system state. This corresponds to the mapping 

x(t + t) = f(x(t)),      (22) 

where x(t + f) is the predicted state vector at the next time step, x(t) is the current state 

vector and / is the mapping function to be approximated by the neural net. Since we are 

working with the embedded reconstruction of the attractor manifold x(t) will correspond to 

the dE dimensional vector corresponding to the current time step, the function / predicts the 

first element of the dE dimensional vector corresponding to the next time step. This operation 
is performed for a range of embedding dimensions (corresponding to the number of nodes in 
the input layer) from 2 to 22 and for each fixed embedding dimension the number of hidden 
nodes is determined by trial and error i.e. by adjusting the number of hidden nodes until a 
prediction error minimum was achieved. Leung and Ho compare the prediction errors that 
resulted from using the RBF neural net (assuming sufficient embedding dimension has been 
reached) against those that occurred when a standard linear predictor was used; they conclude 
that a 2-5 dB improvement is achieved when the neural net that was used.   The results from 
the RBF predictor also indicate the optimum embedding dimension. Fairly distinct minimums 
are visible in the plots of prediction error versus embedding dimension for the chaotic detector 
but not for the linear detector. The presence of these minimums is expected for chaotic 
systems but not for linear detectors. 

Leung and Lo use then use the trained RBF predictor to perform detection on small iceberg 
fragments called growlers. The principle behind the chaotic detection method is simple and 
based on the comparison of prediction errors. Since the RBF neural net has been trained 
using data in which the H0 hypothesis is correct, i.e. no target present, then a prediction 

x(t + T | H0) will be optimum in a mean squares sense while a prediction x(t + T \ Hl) will 

not. The prediction error can be calculated as 

£ = x(t + T)- x(t + T). (23) 

A prediction error threshold can then be defined to predict the presence of a target as follows 

Hx:if £>rj, 

HQ:if e<T]. 

Leung and Lo average the one step prediction error from multiple predictions and chose the 
optimum threshold, 7], using a maximum likelihood criteria. This criteria leads to a 
probability of false alarm (PFA) that would be unacceptably high for any real operating radar, 
nevertheless, the comparison of the receiver operating characteristics of the chaos based 
detector against two standard detectors, namely the amplitude and AR-based adaptive 
detector, suggests that an improvement in detection performance does occur for chaotic 
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detection. Whether the degree of improvement is significant for small PFA's on the order of 
10"* is not discussed. 

In 1994, Blacknell and Oliver undertook their own examination of the chaotic behaviour of 
sea clutter returns in which they raise concerns about the existence of a sea clutter attractor 
[14]. In their analysis real time series of data are compared with artificially generated 
'random' times series.   To form the real time series they incoherently add the measured range 
lines returns from over 250 pulses to form a single range line from which the multiplicative 
speckle noise has been removed. Consecutive range lines are combined in a two dimensional 
array with one axis representing time and the other range. The fluctuations across the two 
dimensional array are well modelled by a correlated gamma distribution. The simulated 
image is generated by measuring the autocorrelation function of the above 'real data' array 
and imposing it on a two dimensional array of gamma distributed noise generated using an 
appropriate 'random' number generator. 

Blacknell and Oliver calculate the correlation dimension of both the real and simulated data. 
Since they only have 224 time samples in each range bin they combine data from 10 adjacent 
line bins to increase the accuracy of the correlation coefficient calculation.   The results of 
their calculations on the real data indicate that the slopes of the log(C(r)) versus log(r) plots 
become constant with increasing embedding dimension for a correlation dimension in the 
range from 3 to 4. However when the analysis was repeated with the simulated data the same 
behaviour was observed, that is the correlation dimension becomes constant at higher 
embedding dimensions. If the simulated data is truly a stochastic process it should have 
infinite degrees of freedom; as the embedding dimension was increased the calculated 
correlation dimension should have continued to increase to fill the available phase space. 
Blacknell and Oliver suggest that this unexpected result 'raises a general doubt about the 
practicality of the correlation dimension measurement technique' and by implication 
questions the results of the earlier papers by Leung and Haykin, and Leung and Lo, which rely 
on the calculation of a fractal correlation coefficient as their primary evidence that a chaotic 
sea clutter attractor exists. It should be recognised that the time series Black and Oliver used 
to calculate their correlation coefficients is only 2240 time samples long, this is roughly the 
same as the 2000 sample time series used by Leung and Haykin [5] in their initial paper, but 
far short of the 20000 samples used by Leung and Lo [13]. The accuracy of Blacknell and 
Oliver's calculations should be treated with caution: they recognise this shortcoming but they 
also question whether a sea clutter attractor will be stationary over the length of time required 
to form the necessary length of time series. It is also unclear whether their observation of 
finite embedding dimension for the simulated 'random' time might be caused by the shortness 
of their time series.   Another possible explanation for the finite correlation dimension of the 
'random' process may lie in the fact that random number generators implemented by a 
computer are in fact fully deterministic. Although with a very long period of repeatability, 
'noise' generated by this method may in fact have a finite attractor associated with it. 

Blacknell and Oliver also point out that presence of correlation in the time series will delay 
the convergence of the correlation dimension estimate, they have not taken any special care to 
ascertain the required embedding delay in their analysis, simply using the sampling period of 
the original data. 
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This is not likely to be a significant concern for the Leung and Lo paper where the 
autocorrelation method was used to calculate the embedding time delay [13]. 

Blacknell and Oliver also studied the effect of noise in the time series on the correlation 
dimension estimates. They generated a time series of 1500 samples at 0.1 s seconds intervals 
from a Lorentz system and added Guassian 'noise' generated using a random number 
generator. Their experiment seems to indicate that the added noise has the greatest effect on 
the slope estimates from the log(C(r)) versus log(r) plot at small values of r. This makes 
intuitive sense as the noise distribution is weighted more heavily to the smaller amplitudes. 
As r is increased the percentage of the noise contribution to the distribution of lengths is 
smaller and the slope estimate becomes more accurate. However, as mentioned earlier the 
linear power law relationship is really defined for the limit as r —> 0, and as such it becomes 
less accurate with increasing r. Therefore measurement of the correlation dimension per 
Grassberger and Procaccia is limited for small r by noise and for large r by fundamental 
considerations. Blacknell and Oliver's results suggest that a minimum signal to noise ratio 
(SNR) of 18 dB is required to allow identification of a chaotic signal in noise using the above 
approach. 

Leung [15] re-examines the issue of chaotic detection in an oceanic environment using 
additional data sets drawn from the same large database (Cape Bonavista, June 1989) used in 
earlier 1993 paper by Leung and Lo [13]. In this 1995 paper, Leung calculates the correlation 
coefficients corresponding to four different scenes and shows that correlation coefficients for 
scenes with targets are lower then pure clutter scenes. He qualitatively explains this 
phenomenon in terms of the high level of geometric regularity associated with targets present 
in the scene. While the difference in correlation coefficient is of theoretical interest it is not a 
practical method for use in real time radar systems due to the large number of points that are 
needed to perform the analysis. As discussed above, the 1993 paper examined the use of 
nonlinear prediction to detect targets in clutter; Leung again uses this approach to detect the 
targets present in each of the four data sets examined in the 1995 paper. Unlike the 1993 
paper where receiver operating curves (ROC) are presented, the 1995 paper presents the 
actual histograms of the prediction errors from sets with and without targets. His results 
demonstrate that the average prediction errors associated with the sets containing a target are 
significantly larger than those associated with sets containing only clutter. This was to be 
expected as the neural network based non-linear predictor was trained using 'clutter only' data 
sets. Unfortunately Leung does not present results obtained using other more common 
detection methods or provide any quantitative analysis of the prediction performance for 
practical false alarm rates (e.g. 10"*), as such the applicability of the method to real 
surveillance systems is unclear. 

Haykin and Li [16] readdress the detection in chaos issue in 1995 with an extensive analysis 
of the chaotic properties of sea clutter. Until this point the evidence supporting the 
description of sea clutter as a chaotic process has been primarily limited to the calculation of a 
fractal correlation coefficient. This is a necessary but insufficient property for identifying a 
chaotic property. Indeed given the broad ranges of the calculated correlation coefficients it is 
difficult to evaluate the absolute accuracy of the algorithms used to compute the correlation 
coefficient from the time series. Haykin and Li recognise the limitations of using only 
correlation dimension as a discriminator and reference a counter example from studies that 
show coloured noise can also exhibit a finite correlation dimension [17]. Building on 
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Newhouse's definition of a chaotic system [18], they offer their own definition of a chaotic 
system as: "A bounded deterministic dynamical system with at least one positive Lyapunov 
exponent is a chaotic system. A chaotic signal is an observation of the system." 

Haykin and Li examine three essential elements of their definition: 

1) The boundedness of sea clutter returns. 

2) Deterministic character of sea clutter returns. 

3) Existence of a positive Lyapunov exponent 

Since the signal in question arises from reflection and scattering of a finite transmitted signal 
the boundedness of the sea clutter returns is readily apparent. 

They test the deterministic property of the system by examining its dimension and its 
predictability. Generally speaking a deterministic system has finite dimension and by 
definition a deterministic system is predictable, provided the underlying model for the system 
can be found. 

As with the other papers they focus on the correlation dimension as an invariant measure of 
the system. They utilise the box counting algorithm of Pineda and Sommerer [19], which is 
computationally more efficient then the original algorithm of Grassberger and Procaccia [7], 
and consider the relationship derived by Eckmann and Ruelle for the limits applying to the 
required data set size 

Dc<21og^}        (24) 

log(-) 
P 

£ 
where p = — « 1, L is the diameter of the reconstructed attractor and £ is maximum 

J-j 

mutual distance [20]. This relationship provides a lower bound on the size of the data set, 
N'total required to estimate a correlation dimension Dc. Data from three separate locations, 
Cape Bonavista, Newfoundland, Dartmouth, Nova Scotia and a site overlooking Lake Ontario 
at Stony Creek, Ontario is used in this study. Each data set consists of at least 40,000 points 
and the combined database covers a broad range of wind speeds and sea states. According to 
the Eckmann and Ruelle limit, the maximum correlation coefficient that can be estimated for 
a 40,000 point set is Dc < 9.4. In identical fashion to that described above they calculate the 

correlation dimension for increasing embedding dimension until convergence of the 
calculated correlation dimension is observed. To determine the appropriate time delay 
between embedding samples they use the method of mutual information content (MI). Their 
analysis gives fractal correlation dimensions varying from 7-9 across the data sets. No 
appreciable pattern of variation according to sea state or location is observed. Haykin and Li 
perform additional calculations to test the reliability of estimates; they repeat the calculation 
of the correlation coefficients using a variety of different lengths for the data sets and observe 
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that for data sets longer than 10,000 samples the calculated correlation coefficients appear 
stable. 

To test the influence of noise on the calculated correlation coefficients they chose two of the 
data sets for further processing. In particular they chose sets drawn from near and far range 
returns, the near range set possessing a much larger clutter to noise ratio (CNR) than the far 
range set. A simple three point smoothing filter (lowpass filter) is applied to the raw sea 
clutter data. When the correlation dimension procedure is repeated on the filtered sets 
essentially no difference is observed in the rate at which the correlation dimension of the 
filtered and unfiltered high CNR set converges to a stable value with increasing correlation. 
In contrast, the unfiltered low CNR set demonstrates no convergence of the calculated 
correlation coefficient, after filtering however, the correlation dimension demonstrates a good 
convergence with increased embedding dimension, similar to the behaviour of the high CNR 
set. This result makes intuitive sense as a random process, which possesses infinite (or at 
least very large) degrees of freedom should not converge to a finite correlation dimension. 
Once the dominating effect of the noise is removed from the data set through filtering, the 
chaotic character of the data is observed. 

As a final test of the validity of the correlation dimensions calculations, Haykin and Li 
randomize the phase of the Fourier spectrum from the original time clutter series to create a 
'random' time series.   The computed correlation coefficient for this 'random' series does not 
converge to a finite correlation dimension with increasing embedding dimension, instead the 
correlation dimension continues to expand to fill the available phase space, a behaviour 
consistent with a true random signal. 

The third item, the existence of a positive Lyapunov exponent, is another necessary condition 
for a chaotic system. Using an algorithm developed by Wolf et al. [21] to estimate the largest 
Lyapunov exponent from a data set, Haykin and Li calculate the value corresponding to each 
set. They perform the calculation for the I-channel, Q-channel and amplitude data and report 
essentially identical results for each channel, a result anticipated from Taken's embedding 
theorem, which imposes no restrictions on the choice of the measured component used to 
reconstruct the attractor.   As with the correlation coefficient they compare the variation of the 
calculated maximum Lyapunov component for different sea states and locations. While the 
calculated maximum Lyapunov exponent varies within a range of 0.03 to 0.04 they are unable 
to identify a clear relationship between the either the location or sea state and the calculated 
Lyapunov coefficients. 

The final aspect to be considered by Haykin and Li was the issue of predictability. As with 
the earlier papers by Leung and Lo [13] and Leung [15] a neural network is constructed to 
model the non-linear dynamics of the underlying sea clutter model. For this study Haykin and 
Li utilize an MLP structure trained using the back propagation method, the details of the 
structure are not given here, the interested reader is referred back to the Haykin and Li paper. 
The development of the mapping neural network serves two purposes: 

1) After training, the network can be used in a recursive (iterative) prediction mode to 
test the ability of the network to successfully predict the future behaviour of a real 
chaotic time series. This item relates back to the requirement of a chaotic system to 
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be deterministic (by definition), i.e. if we can successfully predict future behaviour of 
a real system then it is by nature deterministic. 

2) The fully trained neural net can be used to detect targets in the measured chaotic time 
series. This is done in identical fashion to method described in the Leung and Lo 
[13], where the prediction error at each step is compared to specified threshold to 
determine whether a target is present or not. 

Recursive (iterative) prediction uses new input samples from outside the original training set 
to initiate the prediction mode, each new predicted point is used to replace one of the 
components of the embedded time series in sliding window fashion until, eventually, the 
predictor begins to operate in autonomous fashion. Given the sensitivity of a chaotic system 
to its initial conditions it is not anticipated that the neural net predictor can correctly predict 
new values indefinitely, rather the local prediction time, T, should be inversely proportional 
to the largest Lyapunov coefficient as given by Farmer and Sidorowich [22], 

1       OV 
T~—]n(—), (25) 

Ay       <T0 

where a0 is the uncertainty of the measurement at time T=0 and <TT is the normalized standard 

deviation of the prediction error at time T into the prediction process. Haykin and Li report 
good agreement for the one example they present for which the calculated local prediction 
time is T ~ 56 while the observed local prediction time derived by comparing the recursively 
predicted values with the real measured values in the time series gives T ~ 65. 

As a further check of the local prediction accuracy of the trained neural net predictor they 
average 100 different segments of 1024 samples from the predicted time series and the real 
measured time series. They then calculate the power spectrum of each. Good agreement is 
observed between the two sets. The same 100 segments of 1024 samples are used to plot the 
probability density of the predicted time series. The resulting distribution is shown to be in 
good agreement with a specially chosen theoretical K-distribution, the point being to show 
that the output from chaotic deterministic system is capable of exhibiting characteristics 
typically associated with random systems. This is an important point since any chaotic model 
of sea clutter must be compatible with previous observations that high-resolution sea clutter 
returns appear to well modelled by the K distribution. 

Based on the analysis summarised above and their definition of a chaotic process, Haykin and 
Li assert that sea clutter is a chaotic process. They summarise their results as follows: 

1) Sea clutter is bounded. 

2) Sea clutter has a finite correlation dimension in the range of 7 to 9. 

3) The largest Lyapunov exponent of sea clutter is positive and lies in the range 0.03 to 
0.045. The value has a strong dependence on sea state. 
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4) Sea clutter is locally predictable and most importantly, the dynamics of sea clutter can 
be reconstructed using a deterministic model. 

Haykin and Li next examined the ability to successfully use a neural predictor as a detector. 
Using the same neural detector design developed for the recursive prediction studies, Haykin 
and Li tested the detection capabilities of the chaos based system against a small ice target in 
a sea clutter background. They present ROC curves comparing the detection performance of 
chaos-based noncoherent detector against that of a conventional Doppier CFAR detector. The 
two methods produce similar results in their study despite the fact that the phase information 
is not used for the incoherent chaos detection. This was anticipated as a result of the 
embedding theorem. 

They also present ROC curves comparing a coherent chaos detector and a conventional 
Doppler CFAR detector. The coherent chaos detector differs from the incoherent detector in 
that it performs separate predictions on the I and Q channels of the measured complex data, 
the prediction error of each channel is independently evaluated and the two 'channels' of 
prediction error are then subjected to conventional Doppler CFAR processing. Their results 
suggest that coherent chaotic detection will result in a 10-25% improvement in detection 
performance with respect to standard Doppler CFAR processing for the range of false alarms 
examined. Unlike Leung's earlier paper in which results were only presented for false alarm 
rates much too large for practical implementation, Haykin and Lo's results are presented for a 
range of false alarm probabilities from 10"1 to 10"5. However the analysis assumes that long 
data sets are available, indeed 150 time samples are used to form each chaotic prediction and 
256 samples are used for the Fast Fourier transform (FFT) length in the Doppler analysis. 
This condition if unlikely to be satisfied for any airborne maritime surveillance radar. 

Haykin and Li's analysis is extensive and useful in establishing that many of the necessary 
conditions for the existence of a radar sea clutter attractor are present. Unfortunately while all 
these conditions are necessary they are not sufficient to prove the existence of the chaotic 
attractor. 

A smattering of additional papers between the time frame 1995 through 1997 look at the issue 
of chaotic sea clutter. Palmer et al. [23] generate the correlation coefficient from several time 
series of X-band Doppler radar sea clutter returns collected with a coherent radar located 573 
m above the sea surface on San Clemente Island. They observe convergence for the 
calculation of the correlation coefficient for the vertically polarized (VV) returns but not the 
horizontally polarized (HH) returns. They build a back-propagation neural network to predict 
the surface winds using the VV returns and report an improvement in the prediction accuracy 
over that of the SEAS AT statistical algorithm.   No explanation is given for the different 
convergence characteristics of the VV and HH returns. 

Chakravarthi [24] examines the detection performance of a chaotic detector using simulated 
data from a known chaotic system. The time series output of this system has quantitative 
similarities to real sea clutter returns. As asserted previously by Haykin and Lo, the 
exploitation of the known chaotic properties of the systems allows the detection of the desired 
target in signals with very low signal to clutter ratios. 
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Haykin and Puthusserypady [25] expand on the previous analyses of Haykin and Li [16] by 
analysing five sea clutter sets collected from three different maritime locations using the fully 
coherent IPIX radar and another non-coherent commercial marine radar. They identify five 
criteria they claim are essential for evaluating whether a physical time series is chaotic: 

1) The process should be non-linear. 

2) The attractor (correlation dimension) should be fractal and should converge to a 
constant value for increasing embedding dimension. 

3) The dynamics of the system responsible for the generation of the process should be 
sensitive to initial conditions. This in turn implies that at least one Lyapunov 
exponent should be positive. 

4) The sum of all Lyapunov exponents of the process should be negative for the 
underlying dynamics to be dissipative (i.e. physically realizable). 

5) The Kaplan-Yorke dimension (DKY) should be close in numerical value to the 
correlation dimension. The relationship between the correlation dimension and the 
independently calculated DKY provides a useful crosscheck of the correlation 

dimension [25]. 

As a prerequisite to any analysis, the embedding dimension, dE, and normalized embedding 
delay, t, must be calculated. In this study these parameters were obtained using the Global 
False Nearest Neighbours (GFNN) and Mutual Information (MI) algorithms, respectively. 
To determine the local embedding dimension, dL, a Local False Nearest Neighbours (LFFN) 
algorithm was used.   This value should correspond to the true number of Lyapunov 
exponents and should meet the criteria dL<dE. 

The five criteria can now be addressed. To test the non-linearity of the time series, Haykin 
and Puthusserpady perform three separate tests. 

In the first test they compare the original time series with the output of a finite impulse 
response filter that has been stimulated with zero-mean white Guassian noise. The spectral 
response of the filter is chosen to produce an output power spectrum identical to the original 
clutter time series. The two data sets (i.e. measured clutter returns and filtered noise signal) 
are compared with surrogate data sets created using a stochastic linear model with the same 
autocorrelation coefficients as the original time series. A quantity Z is derived from the 
Mann-Whitney rank-sum statistic; the value of this quantity is indicative of whether the 
original and surrogate data sets came from the same population [26]. For the filtered noise 
signal, the value of Z is always positive indicating that it is a linear process. The Z value for 
the actual sea clutter data is always less than -3.0 indicating that it is not from the same 
population as the stochastic linear model. 

As a further comparison of the real and filtered noise signal, the correlation dimension, 
Lyapunov spectrum and the Kaplan-Yorke dimension are calculated for each set. To calculate 
the correlation dimension, Haykin and Puthusserpady utilise the maximum likelihood method 
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developed by Schouten et al. [27]. This method is chosen due to its superior noise 
performance over that of the Grassberger and Procaccia algorithm used in earlier reports [7]. 
As in the earlier study by Haykin and Li, the sea clutter data is filtered to improve the 
analysis. Haykin and Puthusserpady are careful to examine the diffeomorphic relationship of 
the filtered and unfiltered sea clutter by testing the continuity between the sets and as well as 
the differentiability of the mapping. They assert that their testing confirms the 
diffeomorphism of the two sets (i.e. the underlying dynamics of the sea clutter) are unaffected 
by the processing.   Unlike Haykin and Li who calculated only the largest Lyapunov 
exponent, this study uses the algorithm of Brown, Bryant and Abarbanel [28, 29] to calculate 
the entire Lyapunov spectrum. In addition to providing the full spectrum this algorithm is 
claimed to be more stable in the presence of noise than Wolfs algorithm [21]. 

In summary the following results are reported for the clutter data and filtered noise signal 
(coloured noise) output from the finite impulse response filter: 

1) The correlation value of the real sea clutter is fractal and saturates in the range of 4.1 
through 4.5 for increasing embedding dimension while the value for the coloured 
noise keeps increasing with increasing embedding dimension. 

2) The Lyapunov spectrum of the real sea clutter time series consists of two positive 
exponents followed by one exponent close to zero and two or more negative 
exponents.   The sum of the exponents is always less than zero indicating a dissipative 
system. The Lyapunov spectrum of the coloured noise consists of several positive 
exponents and keeps increasing for increasing values of dE. The sum of the 

exponents for dE < 7 was always positive and non-dissipative. 

3) DKY and Dc are always very close for real sea clutter while for the coloured noise the 

two parameters are never close. 

For the third and final test, the FFT of the real clutter time series is taken and surrogate data 
sets formed from the result by randomizing the phase of each frequency component. The 
correlation dimensions are computed for both the real and surrogate data sets and are 
statistically compared using a Student's t test. The surrogate data sets are found to be 
substantially different from the real sets. 

All three of the above tests help to confirm the non-linearity of the sea clutter data. In 
summary Haykin and Puthusserypady report: 

1) The correlation dimension is fractal and lies in the range 4.1 to 4.5. Its value is 
independent of the time or season in which it is taken, as well as radar range, range 
resolution, type of like-polarisation, sea state, radar location and radar type. It is also 
independent of the radar component used e.g. in-phase, quadrature-phase and 
amplitude component. 

2) The global embedding dimension, dE, is 5 or 6. 
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3) The local embedding dimension, dL, (also corresponds to the number of Lyapunov 

exponents) is either 5 or 6 with dL<dE. 

4) The Lyapunov spectrum consists of two positive exponents, followed by one 
exponent equal to zero (within experimental error) and two or three negative 
exponents. The distribution of the exponents is independent of radar range, radar 
component and sea state, although the absolute values of the exponents do depend on 
sea state and radar type. 

5) The Kaplan-Yorke dimension, a by-product of the Lyapunov spectrum, is consistently 
close to Dc. 

In 1999, Haykin again discusses the results of the Haykin and Puthusserypady and performs 
an independent calculation of the Kolmogorov entropy, hK, using an algorithm based on the 
method of maximum likelihood. The introduction of this measure provides a useful cross 
check of the calculation of the Lyapunov spectrum as the two are related by the formula [27] 

Äjr=E4-     (26) 

Haykin reports that in all cases the relationship holds within a reasonable measurement error. 

Haykin also confirms that the minimum data set size relationship of Eckmann and Ruelle [20] 
is met, namely a time series of length N=10a5Dc is required to estimate the correlation 
dimension while the square of Nis required to successfully estimate the Lyapunov exponents. 
For the maximum reported correlation dimension of 4.5, the required sample size is 31623, 
well below the 50,000 sample sets used by Haykin and Puthusserypady. 

Most recently Lampropoulos and Leung [30] compared the CFAR detection performance of 
chaotic and statistical CFAR detectors. They use real sea clutter data derived from a SAR 
image and report an approximate 2 dB detection gain, however it is not clear what 
configuration they are employing for the statistical CFAR detectors and if they could be 
optimized for improved performance. The study is interesting but very limited. 

Despite the foregoing investigations several key questions remain regarding the applicability 
of chaotic theory to sea clutter modelling. In summary: 

1) A broad range of correlation coefficients have been reported, values range from 3 to 
9. Although Haykin and Puthusserypady eventually conclude that the correlation 
coefficient is invariant against sea state, location and a variety of other parameters, 
the extreme range of reported values raises serious questions as to the reliability of the 
algorithms employed. It remains unknown how robust these algorithms are when 
applied to noisy data. Indeed the wide variability would seem to preclude the ability 
to render any conclusions on the 'fractal' value of the correlation coefficient. 

2) It remains unclear whether the invariant measures of 'chaotic' systems that were 
calculated could in fact merely represent the effect of non-chaotic deterministic 
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Systems with additional coloured noise added to the system. The potential for linear 
dynamic systems with noise to produce positive Lyapunov exponents is recognized 
byTheileretal[30]. 

3) The increases in detection performance are only reported for a limited sampling of 
data sets and, by implication, conditions. The applicability of the methods to a broad 
range of sea states, weather conditions and viewing geometries is currently unknown. 
Certainly the reported detection performance improvements of 2-3 dB are well below 
the anticipated improvements for truly chaotic systems. Whether the use of a non- 
linear chaotic detector instead of a simpler linear detector is justified remains an open 
question. 

4) The clutter noise ratios required is unclear and could prove to be impractically high. 

5) The studies examined have used relatively low resolution data with a range resolution 
of 30 m or more. The application of the method of to a typical airborne high 
bandwidth radar with a resolution of less than 1 metres is currently unknown. 

Some of the key findings of the most relevant studies discussed above are listed in Tablel. 

Table 1. Summary of results from chaos studies. 

Study Length of 
Time Series 

Correlation 
Dimension 

Do 

Sum of Lyapunov exponents < 0 Existence of at least 
one positive Lyapunov 

exponent 

Leung and Haykin 
[5] 

2000 6.4-6.7 Not Calculated Not Calculated 

Leung and Lo[13] 20,000 5.8-7.2 Not Calculated Not Calculated 

Blacknell and Oliver 
[14] 

2,000 3-4 Not Calculated Not Calculated 

Haykin and Li [16] 40,000 7-9 Not Calculated Yes 

Haykin and 
Puthusserpady [25] 

40,000 4.1-4.5 Yes Yes 
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6. Chaotic Behaviour of Sea Clutter from an Airborne 
Radar 

Almost all the studies summarized in the proceedings sections were based on analysis of sea 
clutter collected using land based radars operated in staring modes at grazing angles of less 
than 1°. This is a significant limitation as one of the most important potential applications of 
chaos based protectors is their application to the small target detection from airborne radars. 

The specification of an airborne platform has a number of implications. Typically these 
systems are large bandwidth radars operating at range resolution of less than metre; most of 
the previous studies reviewed in this report relied on data collected with land based radar's 
having range resolutions of 30m or greater. The geometry of the airborne viewing scenario 
also results in steeper grazing angles then those obtained with a land based system. The 
grazing angles encountered in the airborne data examined in this report range from 1.8° to 9°. 
Another important distinction with an airborne system is that the radar platform is moving. It 
has been speculated that this movement would merely represent an additional degree of 
freedom in an already deterministic systems [16] but until now the effect has remained 
unexamined. Indeed, it is possible that the existence of non-stationarity with location of the 
underlying attractor could prevent the development of real time chaotic detectors. 

To better understand these effects a study was undertaken by DREO in cooperation with Dr. 
Leung's group at the University of Calgary to examine high resolution sea clutter data 
collected from an airborne platform with the AN/APS-506 radar. The investigation is 
structured along similar lines to the investigation of Haykin and Puthusserypady with the hope 
that the similarities and differences of the land based low resolution and airborne high 
resolution measurements can be highlighted. 

6.1 Airborne Data Set 

The characteristics of the AN/APS-506 maritime radar are summarized in Table 2 below. All 
files analyzed are summarized in Table 3 along with the operational configuration that was 
employed during the collection process. The viewing direction with respect to the sea swell is 
also noted where applicable. Each time series was constructed from temporally contiguous 
measurements of returns from the same range bin, i.e. a measurement was taken from the 
same range bin for each pulse return.   Each sample will therefore correspond to the return 
from a different geographic location on the sea surface. The manner in which the returns 
migrate across the sea surface will depend on the operating mode described in Table 3, e.g. 
squint, rotating or sectoring. Sea state was not recorded. 
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Table 2. Operating parameter of AN/APS-506 maritime radar. 

PARAMETER DESCRIPTION PARAMETER VALUE 

Frequency 9.5-10 GHz 

Peak Power 500 kW 

Azimuth Beamwidth 2.4° 

Elevation Beamwidth 4° 

Polarization Horizontal-Horizontal 

Sidelobes -20 dB 

6.2 Preconditioning of Airborne Data 

Before analysis the data was preconditioned to minimize the effect of measurement noise on 
the analysis. A simple smoothing filter of the form 

3    1 
y(n>2l-y(n + i-2) (27) 

was applied as per the approach of Haykin and Puthusserypady [25]. To support the assertion 
that the filtered and unfiltered data trajectories are diffeomorphically related, the continuity 
and differentiability of the mapping between the two time series was tested. The continuity 
and differentiability index were calculated as per the approach of Haykin and Puthusserypady 
using an embedding dimension of 7 (independently determined to be the appropriate 
embedding dimension as discussed below). Figure 8 presents a plot of the continuity index 
versus epsilon for five different data sets where epsilon is the fraction of the variance for the 
particular time series. It can be seen that for all data sets the continuity index converges to 
one as the epsilon value is increased to a sufficiently large value to allow a statistically 
meaningful sampling of data points. For all files examined in the data set the continuity index 
ranges between 0.82 and 1.0. 

Figure 9 shows the differentiability index versus epsilon for the same five data sets, the value 
converges to approximately one for all five sets. 
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Table 3. Operational configuration of radar during collection of clutter data files 

FILE NAME PRF 
(HZ) 

ANTENNA 
DEPRESSION 

ANGLE (°) 

VIEWING 
ANGLE 

RESOLUTION OPERATNG MODE 

HDR472S14 672 2.39 Down-swell <1m Squint 85 Degrees 

HDR472S15 672 2.39 » <1m " 

HDR472S16 685 4.54 " <1m " 

HDR472S17 692 8.97 " <1m " 

HDR472S19 715 8.93 Cross-swell <1m " 

HDR472S20 711 4.56 " <1m " 

HDR472S21 711 2.40 « <1m ii 

HDR472S95 314 5.59 N/A 5m Rotating @ 1 RPM 

HDR472S96 314 5.59 N/A 5m " 

HDR473S58 172 1.81 N/A 5m Rotating @1 rpm 

HDR473S59 172 1.81 N/A 5m " 

HDR473S60 172 1.81 N/A 5m " 

HDR473S61 172 1.81 N/A 5m " 

HDR473S62 172 1.81 N/A 5m " 

HDR475S29 353 3.41 N/A 5m Rotating @ 0.5 rpm 

HDR475S30 353 3.41 N/A 5m " 

HDR475S31 353 3.41 N/A 5m " 

HDR475S32 353 3.41 N/A 5m " 

HDR475S33 353 3.41 N/A 5m " 

HDR475S34 353 3.41 N/A 5m " 

HDR475S35 353 3.41 N/A 5m H 

HDR475S36 353 3.41 N/A 5m H 

HDR475S37 353 3.41 N/A 5m " 

HDR418S39 590 5.84 N/A <1m Sectoring over 20 

degrees at effective 

speed of 6 rpm 

HDR418S40 590 5.84 N/A <1m " 
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Figure 8. Continuity index versus epsilon 
for selected data sets and embedding 
dimension of 7. 

Figure 9. Differentiability index versus 
epsilon for selected data sets and 
embedding dimension of 7. 

6.3 Time Delay and Embedding Dimension Estimation for 
Airborne Data 

The appropriate time delay was calculated using the first minimum of the mutual information 
function. When the time delay was calculated using the unfiltered data many of the data files 
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produced a minimum at a delay of one. This is illustrated in figure 10 for the plot of the 
mutual information function versus delay for one unfiltered time series. 

Since a delay of one represents the fundamental minimum resolution that can be derived from 
the given time series it is unclear if it is in fact an optimum delay or if the measured samples 
were so widely spaced they have completed de-correlated over the sampling interval. The 
calculation was repeated on the filtered data and the optimum delay was found to vary 
between 5 and 20 indicating that the delay of one was a result of de-correlation due to 
measurement noise. Figure 11 shows an example the plot of the mutual information function 
versus delay for a filtered time series where an approximate optimum delay of 20 is indicated. 
It is unclear why the optimum delay varies over so broad a range although sea state or 
atmospheric conditions may have an effect through their impact on the Lyapunov exponents 
discussed later in this report. 

The embedding dimension was next calculated using the method of false nearest neighbours 
[32]. A sample FNN plot of the filtered time series versus embedded dimension is shown in 
figure 12. In this example the percentage of FNN never falls below 40%. Figure 13 
illustrates another time series in which the FNN more closely approaches the zero limit. 

delay 

Figure 10. Mutual information versus delay for 
unfiltered time series HDR472s14, range bin 
361. 
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Figure 11. Mutual information versus delay for 
filtered time series HDR473s58, range bin 361. 

Figure 14 and 15 display histograms of the calculated embedding delays and embedding 
dimension respectively. The broad range of calculated embedding delays is clearly seen in 
figure 14 while the measured embedding dimensions are tightly concentrated in the range of 6 
to 7. As discussed above, Haykin and Puthusserypady [25] report an embedding dimension of 
5 to 6. While it might be speculated that the increased embedding dimensions arise as a result 
of the additional degree of freedom introduced by the moving platform of the airborne system, 
the reason for this difference remains unclear. 
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3 4 5 
Embedding dimension 

Figure    12.    Percentage    of   FNN    versus 
embedding dimension for data set HDR472s15. 

Embedding dimension 

Figure    13.    Percentage    of    FNN    versus 
embedding dimension for data set HDR472s95. 
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Figure 14. Histogram of embedding delays calculated 
from all data sets. 

Embeddinq Dimension 

Figure   15.   Histogram   of   embedding   dimensions 
calculated from all data sets. 
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6.4 Analyses of Airborne Data 

With the embedding delay and embedding dimension determined as discussed above, the 
airborne data was then analyzed to determine the following parameters: 

1) Correlation dimension 

2) Lyapunov exponents and Lyapunov dimension 

6.4.1 Correlation Dimension of Airborne Data 
The correlation dimension was calculated using two independent methods. The first method 
utilizes a least squares (LS) fitting as outlined in section 3.1 for equation (9). Because of the 
LS method's sensitivity to noise the correlation dimension has also been derived using the 
maximum likelihood (ML) approach of Schouten et al. [7]. Figure 16 presents the histogram 
of results calculated using each approach on filtered data. The results from both approaches 
show good agreement. Figure 17 presents the histogram of results produced using the ML 
approach on filtered and unfiltered data. 

8 
o 

Correlation Dimension 

Figure 16. Histograms of correlation dimensions 
calculated from all filtered data sets using LS and ML 
techniques. 
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Figure 17. Histograms of correlation dimension 
calculated from filtered and unfiltered data sets using 
ML technique. 

The average measured correlation value calculated from the filtered data is 4.42 and 4.63 for 
the LS and ML techniques respectively. The average measured correlation value calculated 
from the filtered data and unfiltered data is 4.63 and 4.49, respectively. The range of 
measured correlation values is consistent with those measured by Haykin and Puthusserypady 
[25] who reported a range of 4.1 to 4.5. 

This level of consistency is remarkable when one considers that: 
a) the measurements analyzed in this report were taken with a radar on a moving 

airborne platform without any attempt to compensate for motion 
b) the data set is composed of very high range resolution measurements of less then a 

meter. 

Perhaps most intriguing is the stability of correlation dimension with resolution. The data of 
Haykin and Puthusserypady was derived from 30-300 m resolution data; 'low resolution' 
measurements such as these typically display a Guassian-like distribution when their 
probability distribution is plotted. In contrast the sub-metre high resolution measurements 
used in this study have a probability distribution plot well modeled by the K-distribution. The 
character of the two distributions (Guassian and K-distribution) can be quite different and it is 
unclear how these differences should be reflected in the calculated chaotic invariants. Further 
studies are required to investigate the relationship, possibly diffeomorphic, between the high 
resolution and low resolution returns and to establish if the consistency is indeed a real 
property of sea clutter returns or merely a limitation of the algorithms used to calculate it. 
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6.4.2 Lyapunov Exponents and Lyapunov Dimension of Airborne Data 
The Darbyshire and Broomhead [33] technique, hereafter referred to as the DB technique, is 
used to calculate the Lyapunov spectrum. This method is chosen due its enhanced stability in 
the presence of noise in comparison with earlier techniques. Figure 18 displays a typical 
spectrum calculated from one data set. 
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Figure 18. Lyapunov spectrum calculated for data set HDR472s95, 
range bin 600. 

Three general features, consistent with real life chaotic behaviour, are observed in the 
calculations for all data sets: 

1) All spectrums contain at least one Lyapunov exponent that is very close to zero. As 
discussed in section 3.2, this a fundamental property of any bounded attractor of an 
autonomous system. 

2) The sum of Lyapunov exponents in each spectrum is less than zero, this is indicative 
of an underlying process that is dissipative in nature (typical of real world dynamical 
systems). 

3) Each spectrum contains at least one positive Lyapunov exponent, a necessary 
requirement if a system is to display chaotic behaviour. 

Figure 19 displays a histogram of the largest Lyapunov exponent from each data set.   As 
observed in other studies the largest exponent can be distributed over a range of values and 
Haykin and Puthusserypady observed a positive correlation of with sea state. Unfortunately 
sea 
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Figure 19. Histogram of largest Lyapunov values from 
each data set. 

Correlation Dimension/Lyapunov Dimension 

Figure 20. Histogram of Lyapunov dimensions from all 
data sets. 

state values are not available for the data set used in this study and any connection between 
increased sea state and increased maximum Lyapunov exponent cannot be verified. 

As discussed in section 3.2, the calculation of the Lyapunov dimension provides a useful 
crosscheck of the correlation dimension as the two parameters should be close in value, 
although not necessarily equal. Figure 20 presents a histogram of the Lyapunov dimensions 
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from all data sets and the correlation dimension calculated from the filtered data using the ML 
technique. 

6.4.3 Non-linearity of Airborne Data Sets 

Two tests were performed to lend confidence to the statement that data sets under 
consideration are indeed generated by a nonlinear dynamic system. The tests compare the 
actual data sets with surrogate data sets from linear stochastic processes. The two tests are as 
follows 

1) Correlation coefficient of randomized data (RD) sets   - In this test the fast Fourier 
transform (FFT) of data set is taken and the phase components of the resulting 
spectrum randomized by choosing the phases from a set of uniformly distributed 
values between 0 and 2TT generated using a random number generator. The resulting 
spectrum is then inverse FFTed to produce a surrogate data set with the same 
autocorrelation function as the initial real time series. The act of randomizing the 
phases causes the surrogate data sets to become more Guassian in character. The 
correlation dimension of the resulting surrogate data set is computed and compared 
with the original data set. 

2) Statistical comparison of stochastic linear (SL) data with sea clutter data - The 
growth of the inter-point distances is measured between the real sea clutter data and 
surrogate data sets generated from a stochastic Guassian linear model with the same 
autocorrelation coefficients. A quantity, Z, is calculated from the Mann-Whitney 
rank-sum statistic. A value of less than -3.0 is considered sufficient to rule out the 
null hypothesis that the surrogate and real data sets are drawn from the same 
stochastic model. 

Figure 21 displays the histograms of the correlation coefficients calculated using the ML 
technique on the originals data sets and the RD sets using an embedding dimension of 7. The 
RD data sets produce a higher calculated correlation dimension with an average value of 8.45. 
Another significant difference is that the calculated correlation dimension of the surrogate 
data sets keeps increasing as the embedding dimension is increased beyond the value of 6 
earlier determined using the FNN approach. This expansion of the correlation dimension to 
fill the available phase space is typical of a noise process. This is illustrated in figure 22 for 
one data set. 

The significant differences in correlation coefficients between real data and surrogate data sets 
strongly suggest the sets are drawn from unrelated populations. However, the test does not 
definitively prove that the real data sets are non-linear but merely confirms that the surrogate 
data sets, which are essentially linear Guassian processes, are fundamentally different from 
the real data sets. 

The results of the second test are displayed in figure 23 as a histogram of the calculated Z 
values from all the data sets. It is readily evident that the calculated Z values are less than 
negative 3.0 for most of the data sets examined.   Once again it can be concluded that the real 
data sets are not represented by a Guassian linear model. 
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Figure 21. Histogram of correlation dimensions 
calculated from real data sets and surrogate RD data 
sets. 
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Figure 22. Plot of calculated correlation dimension 
versus embedding dimension for RD surrogate data 
sets and real data sets HDR472s14 and HDR472s96.. 
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Z parameter 

Figure 23. Histogram of Z parameter calculated from 
comparison of real data sets and surrogate SL data 
sets. 

6.5 Prediction Performance for Airborne Data 

The ultimate goal of applying chaotic theory to the sea clutter problem is exploit its 
deterministic nature so as to develop accurate predictors for sea clutter returns. As discussed 
in section 3, this ability to accurately predict sea clutter returns via a non-linear chaotic model 
should in theory, produce substantial improvements in detection performance over that of 
stochastic models. In the following sections the performance of two different predictors is 
examined and as a necessary precursor to the development of a predictor the stationarity of 
the data sets is examined. Clearly the development of any real predictor scheme for use in 
real radar detections is dependent on the underlying attractor structure remaining stationary 
between the time the predictor is trained and the latest prediction is attempted. 

6.5.1 Stationarity of Airborne Data Sets 

Figure 24 is an example of a recurrence plot for one of the real data sets. The fairly uniform 
nature of the plot confirms the stationarity of the time series [34]. Other data sets produce 
similar results. 
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Figure 24. Recurrence plot for data set HDR472s14, range bin 361, 
embedding dimension 7, r=45% of standard deviation. 

6.5.2 Prediction Analysis for Airborne Data 

Two different approaches are used to construct the predictor, a local linear technique and a 
radial basis function. 

The local linear technique works by developing a look up table of values during its training. 
After training, the neighbours of the current point are fitted to a linear function to produce a 
prediction. In the simple zeroth order predictor used in this study the prediction is formed 
using a simple average of the state space neighbours surrounding the current point. 

The radial basis function technique is a global interpolation technique with good localization 
properties. The form of the predictor used in this study is given as 

F(x) = YJÄj(/>(\\x-cj ||)        (28) 

where (j)(r) = e^ is constructed about nc number centres (c;-), with the constant (7 being 

determined as a multiple of the average distance between data points considered in the fit. The 
X ■ constants are determined by a least squares fit to the observations in the learning set, 

b = AA (29) 
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where b are the observations, A is a vector of length nc whoseyth component is A} and A is 

given by 

A;=^(|h-C,-|) (30) 

The number of centres as well as the multiple of the average distances between the data points 
is fixed [12]. 

Figures 25 and 26 show two examples of predictions performed using the zeroth order 
predictor and radial basis function. The actual and predicated time series are shown above 
and the mean square error (MSE) between them, below. The actual real data series used for 
training and prediction was normalized to a range of +/- 1 for ease of comparison. 

Each predictor was trained with a data set of 20000 points and then used to predict 200 steps 
forward in one step fashion i.e. the most recently acquired real measured values are used as 
the input for the next prediction step. No attempt is made to predict further than one step 
beyond the most recently measured dE values at any time. The zeroth order predictor was 
restricted to use a minimum of 4 neighbours and a maximum of 50 neighbours for each step. 
In the case of the radial basis function, the number of random centers was fixed at 150 and the 
variance of the radial basis functions was fixed at 0.001. 

Figure 27 presents histograms of the average MSE measured from 50 range bins in 8 different 
data sets using the zeroth order predictor and the radial basis function. Both methods produce 
similar results with an average MSE of 0.00325 and 0.00319 across the data sets for the radial 
basis function and zeroth order predictor respectively. 
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Figure 25. Zeroth order prediction of time series HDR472s15 a) Times series of real data and 
predicted time series b) MSE between real time series and predicted time series. 
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Figure 26. Radial basis function prediction of time series HDR472s15 a) Times series of real data 
and predicted time series b) MSE between real time series and predicted time series. 
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7. Conclusions 

Past studies, coupled with an evaluation of new high resolution airborne data suggest that 
chaotic dynamic systems may form an effective model of sea clutter returns. If a detector 
based on the predictive properties of chaotic systems can be developed it raises the possibility 
of dramatically improving detection performance over that of detectors based on stochastic 
approaches. 

In this study several key parameters of chaotic dynamic systems, namely correlation 
dimension, Lyapunov spectrum and Lyapunov dimension were calculated using the high 
resolution sea clutter returns from the AN/APS-506 radar and found to be consistent with a 
chaotic interpretation of the dynamics. This study extends the results of Haykin and 
Puthusserypady which showed that the calculated correlation coefficients of real sea clutter 
were independent of the time or season in which it is taken, as well as radar range, range 
resolution, type of like-polarisation, sea state, radar location and radar type for two different 
low resolution radars operating in a fixed staring mode. In this report high resolution data 
(less than one metre) collected from a moving airborne platform produces a correlation 
coefficient with an average value of 4.63 and a standard deviation of 0.73, roughly consistent 
with the range of 4.1-4.5 reported by Haykin and Puthusserypady. However the airborne data 
differs in that it displays an embedding dimension of 6-7 in contrast with the 5 to 6 range 
reported by Haykin and Puthusserypady. A comparison of Lyapunov spectrums is not 
possible due to their dependence on sea state which was not recorded for the airborne data. 

The airborne sea clutter data was compared with two different surrogate data sets composed 
of linear Guassian time series generated by randomizing the phase of the real data power 
spectrum and using a linear stochastic random number generator, respectively. Comparison 
of the correlation coefficients from the real data time series and the randomized phase sets 
shows substantially different correlation coefficients indicating that the two sets are 
dynamically unrelated. A statistical comparison of the real data set with time series generated 
using a random number generator for a stochastic Guassian model also indicates that the real 
data sets are not represented by this linear statistical model. 

Despite the above evidence a number or fundamental questions remain unresolved. 

1) A broad range of correlation coefficients has been reported over the past 10 years 
with values ranging from 3 to 9 [5,10,13,14,15,16,24,25]. The data examined in this 
report produces results consistent with those of Haykin and Puthusserypady who 
concluded that the correlation coefficient is invariant against sea state, location and a 
variety of other parameters. However, the extreme range of reported values raises 
serious questions as to the reliability of the algorithms employed [25]. It remains 
unknown how robust these algorithms are when applied to noisy data. Indeed the 
wide variability would seem to preclude the ability to render any conclusions on the 
'fractal' value of the correlation coefficient. 

2) The increases in detection performance are only reported for a limited sampling of 
data sets and, by implication, conditions. The applicability of the methods to a broad 
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range of sea states, weather conditions and viewing geometries is currently unknown. 
Certainly past reported detection performance improvements of 2-3 dB are well 
below the anticipated improvements for truly chaotic systems [13,15,16]. Whether 
the use of a non-linear chaotic detector instead of a simpler linear detector is justified 
remains an open question. 

3)   The clutter to noise ratios required for successful chaotic prediction remains unclear 
and could prove to be impractically high [14]. 

The deterministic character of the sea clutter returns is tested by developing a one step non- 
linear predictor. Two different approaches are implemented, a local linear technique and a 
radial basis function (RBF) neural network. A mean square error (MSE) of approximately 
0.0032 is measured between the predicted and normalized real time series for both 
approaches. While a degree of predictability is demonstrated by this result it remains unclear 
whether the non-linear predictor will provide superior results in comparison to other more 
traditional detection schemes under real world detection scenarios. 

The analysis in this report was confined to determining if the temporal variations in sea clutter 
returns collected from an airborne maritime radar were consistent with a chaotic 
interpretation. The results discussed provide qualified support for this interpretation. Future 
studies will examine the potential of exploiting the deterministic nature of chaotic processes 
to allow enhanced detection of targets in sea clutter. To clarify this issue, follow up studies 
will examine the detection performance of a non-linear detector and compare it against the 
performance achieved using more traditional methods such as CA-CFAR and stochastic 
coherent detectors. 
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